If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6x-13=0
a = 9; b = 6; c = -13;
Δ = b2-4ac
Δ = 62-4·9·(-13)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{14}}{2*9}=\frac{-6-6\sqrt{14}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{14}}{2*9}=\frac{-6+6\sqrt{14}}{18} $
| 3d=-4d-35 | | -10-5y=25 | | 9a-8a=-4+9 | | 56y=-28 | | 58y=-28 | | 5x–1=2x+5 | | -6x-5=3x-8 | | –6x-5=3x+8 | | (x*(x-1))/2=90 | | -9=9-3u | | 6(x-7)=-60 | | 12=x/4+8 | | 12=x4+8 | | 286-v=238 | | 282=-w+226 | | -v+279=111 | | 33=v/5-2 | | {-(k-2)/2}^2=16 | | 3z/10+3=-8 | | 3x−6=2(x−6) | | t=8-10t | | 2x+3÷5=3x-1÷4 | | 196^(x)=28 | | 3y2+8y+5y=0 | | 3÷x+3÷4x=5÷8 | | 56=10x-3x | | |2x-5|=15+x | | 2(x+3x)=14 | | 17-2x=9-6x | | 5+6p=23 | | 0.5x10=0.5 | | g+45=34 |